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Phase Shift Determination of Imperfect Open
Calibration Standards

Gary Biddle

Abstract —A new measurement technique for determining the inher-
ent phase shift of open calibration standards for network analyzers due
to fringing capacitance is presented. The resultant phase shift is directly
measured using an uncalibrated network amalyzer and requires no
modeling of coefficients of capacitance as conventional methods do. An
exact expression for the phase shift of an imperfect open is derived for
each frequency point. Two sets of standard one-port error equations are
developed for the application. The traditional set of calibration stan-
dards, the match, short, and imperfect open, are used. The standards
are measured twice: once at the reference plane and then offset by a
precision piece of air line. Results are presented for the phase shifts of a
few open calibration standards at discrete frequencies.

1. INTRODUCTION

Network analyzers have been used extensively to characterize
microwave components and devices for several decades. Im-
provements in instrumentation hardware, computer availability,
and new calibration standards and procedures have enhanced
measurement capabilities.

Initially, with the formulation of signal flow graphs well docu-
mented, early works by Hackborn [1] and Hand [2] introduced
the automatic network analyzer system. Attention focused on
hardware description, calibration procedures, and measurement
accuracy. The error models appearing in these works were
eight-term with the following calibration standards: the match,
the short, and the offset short.

A few years later, an open calibration standard was intro-
duced as an option to the offset short by Kruppa [3]. By 1978 it
was known and pointed out in works by Rehnmark [4], daSilva
and McPhun [5], and Fitzpatrick [6] that opens were imperfect
because of radiation and stray capacitance.

The phase shift of an imperfect open was addressed by
daSilva and McPhun. The measurement procedure required
four test pieces with identical terminations, identical propaga-
tion factors for offsets of prescribed lengths, and a short circuit
test piece. A total of five measurements were required.

Hewlett Packard approached the phase shift problem of an
imperfect open in a different manner. In Application Note
221A, an accuracy enhancement program using coefficients of
capacitance to correct for the residual fringing effects of a
shielded open was presénted. The resultant phase shift was
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modeled as a function of frequency. The coefficients of capaci-
tance were then chosen to best fit the selected measurement
responses.

In this paper, a new measurement technique that obtains the
phase shift directly is presented. The conventional calibration
standards are used: the match (fixed and/or sliding load), the
short, and the imperfect open. One piece of precision air line is
also required.

In contrast to prior measurement procedures, no special test
pieces are needed, no identical terminations or propagation
factors for prescribed lengths are required, and no coefficients
of capacitance are required.

II. ErrorR EquaTiONS

This section shows the two sets of error equations needed to
determine the phase shift of the imperfect open. The conven-
tional methods of signal flow analysis, using Mason’s rule, are
employed. The well-known one-port error network is obtained.

In order to determine the open’s phase shift, a total of six
measurements must be made. The first set of measurements
require the three standards to be measured at a reference plane.
The error terms of the reference plane are unknown. Thus it is
an uncalibrated measurement. '

The second set of measurements require the three standards
to be measured again at the same reference plane but offset
with a precision piece of air line. Again the error terms are
unknown and the measurement is uncalibrated. The introduc-
tion of the air line into the second set of measurements has
added an additional propagation factor which is unknown.

The reflection coefficients of the calibration standards and
the propagation factor of the air line appear in the error
network diagrams. The three reflection coefficients are treated
as follows. '

The match in the ideal case is reflectionless, thus having a
reflection coefficient of zero. The reflection coefficient of the
match is represented as zero in the error equations. The stan-
dard practice of utilizing the sliding load at higher frequencies

'to enhance the measurement of the true system directivity is

used.

The short in the ideal case reflects all the incident energy with
a phase inversion at all frequencies. The reflection coefficient of
the short is represented as {1} with an argument of 7 in the
error equations, The precision shorts found in 3.5 mm, 7 mm,
and 14 mm calibration kits have very low residual inductance;
thus they may be considered ideal for this measurement tech-
nique.

The open in the ideal case reflects all the incident energy with
no phase shift. In practice, there is an appreciable phase shift
associated with an open. The reflection coefficient of the imper-
fect open is represented as /1] with an unknown argument in the
error equations. Thus only four measurements can be made of
known calibration standards.

The precision piece of air line is required to offset the
calibration standards. The air line is considered to be reflection-
less with unknown propagation factors and length. It is depicted
as such, ,

The flow graphs for the two sets of error equations are shown
in Fig. 1 and Fig. 2. The upper flow graph depicts the standard
one-port error network. The lower flow graph depicts a one-port
error network which includes an additional offset.

The variable T, is the reflection coefficient measured at the
analyzer’s measurement plane, while T, represents the reflec-
tion coefficient of the calibration standard applied at the refer-
ence plane. In the conventional way, the three error terms
exp(— kI) represents the offset introduced by the reflectionless
air line.
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Fig. 1. Standard one-port model. Flow diagram for the first set of
measurements.
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Fig. 2. One-port model with offset. Flow diagram for the second set of

measurements.

Using Mason’s rule, the reflection coefficient I,, can be
expressed as a function of the three error terms, the reflection
coefficient of the calibration standard, and exp(— kI) for the
offset case.

For the standard one-port error model the error equation is

I, =Ed Erle 1
=FEd+
" 1-EsT,, @
For the one-port model with offset the error equations is
exp(—kD)ErT,,
[,=Ed+ ( ) 2)
l—exp(—Kki)EsT,,

The conventional way is to consider the three error terms in
the above equations as unknowns. However, since Ed can be
measured directly using the matched standard, the substitution
I;, =T, — Ed will be made. This will allow the error equations
to be expressed in matrix form. Applying the known reflection
coefficient for a short and the unknown reflection coefficient for
a shielded open to both sets of error network equations, the
matrix representation is as follows.

Matrix equation for the standard one-port error model is

ei‘rr eI Er T
o 0 ms = ms (3)
e T, 1| Es L,
where
¢’® = the unknown phase shift for the open standard,
s =the measured short reflection coefficient,
I’;,, = the measured open reflection coefficient.
The matrix equation for the one-port model with offset is
ei™ " T | Er r.,, e*
ig 18 all = 2k! (4)
e e Fmoo Es F’:l()() e

where

2kl =the propagation term for the air line,
T’ =the measured short offset reflection coefficient,

mso

T, =the measured open offset reflection coefficient.

The inverse matrices of the error term coefficients matrices
do exist. Multiplying through by the corresponding inverse coef-
ficient matrix, the unknown error terms, Er and Es, may be
equated from the two sets of matrix equations. Thus the un-
known error-terms are removed and the network analyzer is
consider to be uncalibrated for these measurements.

Solving for the inverse matrices and equating terms, the
following equation is obtained:

[—MJU%—MJ mJU%—MJHM&”1
U (Gh=Tno) = 1/(Tp—To) | Thoe ™
_ [ ~Thoo/(Tso = Do) Tiso/ (Tiso = F,:m)}
1/(Tso = Do) = 1/(Tirgo =~ Thoo)
T ezkle—m
’ [rzzzezkleﬂe } &)

Performing the matrix multiplication, substituting for e~ '™,
and collecting terms, the following two equations with two
unknowns are left. The two unknowns are the phase shift of the
imperfect open and the propagation term for the air line:

(E:Izorl;ls/(rr;zs - I‘!;IO)) = (Fnlzoorr:tsu /(F,:lw - moo))ZZkl (6)
(Tms / (Tns = Do) + (Do / (Tins = Lo ) Y %)
= [(Ft;lso /(Fr;m‘o - rr;wo))
+{(Thoo /(’1‘"/”0 — F’;ioo))e—w] o2kl %)

By equating ¢2*/ in (6) and (7), the unknown properties of the
air line are removed. After collecting terms, the following ex-
pression involving the unknown phase shift and measured quan-
tities is obtained:

A+Be =0 (8)

where
A= (rr;orr;zsrr:mo - rr;lsrr;morr;zso) (9)
B= (I‘rzzorr:zsrr;oo - rr;torr;worr:tso)' (10)

By equating the real and imaginary parts of (8), two expres-
sions for the phase shift of an imperfect open are obtained:

6 =cos™! [Re —_—A] (11)
B
and
0=—sin"[lm:—A]. (12)
B

If the real and imaginary parts of 4 and B are expressed in
terms of the measured T, it can be shown that the numerators in
(11) and (12) are not equal and likewise for the denominators.
Numerically, both expressions are used and the average is then
taken for the phase shift.

Once the phase shift is determined, the true reflection coeffi-
cient of the open is precisely known. The phase shift can then
be used in any calibration procedure requiring this open. In-
stead of modeling an error network including an ideal open, one
models an error network including an imperfect open with its
respective phase shift.

For the case of the match, short, and open calibration proce-
dure for network analyzers, the measured phase shift may be
directly substituted into the equations determining the error
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terms. In particular, it would be most useful in cases where the
coefficients of capacitance were unknown or prototype opens
for special measurement conditions were used. Assuming the
directivity error term, Ed, is not an unknown because it can be
directly determined by measurement, the error terms Er and Es

can be expressed as follows:
’ -1 ’
- Fms Fms
e’ rr:w] [Fr;m]

2]l

where

' = the phase shift of an imperfect open,
T, =the measured I' for a short at the reference plane,
I}, =the measured I' for an open at the reference plane.

mo

This representation of these error terms applies to all stan-
dard crror equations using the match, short, short, and open
calibration procedure. The above is also valid for the full two-
port {12 error terms] error correction procedure.,
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III. ResuLts FOR 7 MM OPEN STANDARD

The above method was used on an open calibration standard
that accompanies HP8510 network analyzers. The 7 mm open,
part number MMC2616D1, was evaluated from 0.1 to 20 GHz.
A piece of 10 cm air line, HP11566A with support beads, was
used to offset the calibration standards.

Measurements were first made on the three standards at a
reference plane. A fixed load was used between 0.1 and 2 GHz,
with a sliding load used at the higher frequencies. A machine
averaging factor of 1024 was used to improve measurcment
accuracy. These measurements were repeated a second time, in
which the three standards were offset by the piece of air line.

The measured phase shift of the imperfect open is shown in
Fig. 3. The raw data are presented along with a least square fit
of the data. Increased averages and repeated acquisitions can
improved the raw data. The true phase shift is a smooth func-
tion. The least square fit of the data yields the exact correction
factor needed for the open. A detailed printout of the phase
shift of the 7 mm open is available on request.

IV. APPLICATION OF METHOD

This approach was found most useful in a measurement study
of coaxial discontinuities. An investigation was done to deter-
mine the axial separation distance of the inner and outer step
discontinuities which produced minimum reflections. To facili-
tate fabrication of test pieces, a 7 mm to 14 mm type transition
was studied. This required a calibration procedure using a
14 mm prototype open.

Measurements of the open’s phase shift for the 14 mm open
are presented in Fig. 4. Again the least square fit of the raw
data was used to determine the phase shift factor. The phase
shift factor was used to determine the error terms, Er and Es,
needed in the measurement. A detailed printout of the phase
shift for the 14 mm open is available on request.

V. CONCLUSIONS

This empirical method can be used to accurately determine '

the correction factor needed for imperfect opens due to fringing
capacitance. It offers the advantage of determining the unknown
phase shift for an open by using the same unknown open, an air
line with unknown properties, and a network analyzer which is
not calibrated. No other calibration kits or modeling coefficients
are necessary. This method can be used with opens of any type
if an accompanying short, match, and air line exist.
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An Analytical Approach to the Analysis of
Dispersion Characteristics of
Microstrip Lines

Dorel Homentcovschi

Abstract —A new analytical method for determining the dispersion
characteristics of microstrip lines is given. The method uses dual
integral equations, and the dispersion relation is obtained in terms of a
double infinite system of linear equations with good convergence proper-
ties.

I. INTRODUCTION

Microstrip is one of the most important elements in mi-
crowave integrated circuits and microwave networks. In the
early stage of microstrip-line analysis, much of the work was
based on the quasi-TEM approximation [1]-{4]. This approxima-
tion is valid only for low frequences, and the resulting parame-
ters, such as characteristic impedance and the propagation
wavenumber, are independent of frequency. However, this ap-
proximate model is inadequate for estimating the dispersion
properties of the microstrip line at higher frequences; conse-
quently, a more rigorous full-wave analysis is required [5]). Vari-
ous methods have been employed to calculate the dispersion
characteristics of the stripline. Thus Hornsby and Gopinath [6]
applied the finite difference method and a minimization tech-
nique. Dally [7] applied the finite element method; Zysman and
Varon [8] formulated the integral equations of the problem; and
Yamashita and Atuski [9] solved these integral equations numer-
ically by nonuniform discretization of the integral domains. For
shielded microstrip lines Mittra and Itoh [10] used the singular
integral equation approach for deriving a new form of the
dispersion equation with superior convergence properties. The
spectral-domain approach has also often been applied to the
full-wave analysis of the microstrip lines [11]-[14]. We also
mention application to the microstrip problem of the variational
conformal mapping technique [15].

Some of the developed methods are based on the assumption
of certain “closed form” expressions for the longitudinal and
transverse current distributions on the strip. As the proposed
forms do not reveal the frequency and dielectric constant depen-
dence of the current distributions with good accuracy, the re-
sults obtained with various methods have sometimes been quite
different [16],

In this paper we developed a method to analyze the problem
of microstrip shielded by two parallel planes similar to the
method given by Mittra and Itoh [19] for the case of the
completely shielded microstrip. Since in our case the dielectric
domain is infinite, there follows a system of two integral equa-
tions instead of series equations corresponding to the bounded
dielectric domain considered in [10]. We have succeeded in
transforming the system of integral equations into an infinite
system of linear equations, As a by-product, there follow two
compatibility conditions which yield the dispersion equation of
the problem.

II. FORMULATION OF THE PROBLEM

In Fig. 1 the cross section of the microstrip line to be analyzed
is shown. The geometry contains a conducting strip placed on a
dielectric substrate and two perfectly conducting planes. The
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